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Abstract

One of the interesting properties of fractals is that some fractals may have infinitely large perimeters.
The notion of length and measurements based on length is then not suitable to quantitatively describe
the fractal. Here, we review a construction of the Hausdorff dimension from the Hausdorff measure.
The review starts with Caratheodory’s construction of the Hausdorff measure and its relation to the
Lebesgue measure. Once the measure is defined, the definition of the Hausdorff dimension is introduced.
We calculated the dimensions of a few fractal and non-fractal objects. Lastly, we show its relation with
the similarity dimension.
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1 Motivation

1.1 Coastline paradox and the study of fractals
The concepts of counting, length, area, and volume are useful quantities that allow us to describe many
physical objects. However, some objects cannot be properly described through these quantities. The most
famous example of this is a coastline. Measuring the length of a coastline on a map of scale 1:100,000 will
result in a different length when measuring from a map with a scale of 1:1,000. The difference is not in terms
of how precisely one can measure the coastline. As we measure more and more precisely, the coastline length
becomes longer. This is because the roughness of the coastline presents in every scale1. As one measures
with more accuracy, one adds finer peninsulas and bays to the length. The difference is firstly observed from
Richardson. The ad-hoc solution people of that day proposed was to agree on the scale of measurement.
Later Mandelbrot [Man82], pointed out in his essay that one can use a measure proposed decades earlier by
Hausdorff to properly describe these objects.

Figure 1: Satellite images of the western coastline of Thailand. These are screenshots from Google Earth.
As one inspects the image with more precision, from left to right, one can see hidden details. The length of
the coastline has to take these finer details into account.

The coastline is one of the examples of natural fractals. A mathematical fractal is more idealized than
a natural fractal. The natural fractal is guaranteed to stop having the roughness once reaches the atomic
level, while the mathematical one is constructed (e.g. Koch curve) or discovered (Mandelbrot set) to be
infinitesimally rough.

1Mandelbrot stated that the roughness vanishes at the scale of 50 cm. Even if this is true, measuring an entire coastline of
tens of thousands of kilometers in length to the precision of 50 cm is tedious work.
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For an example of a fractal, consider the Koch curve. It is easy to construct along. Once constructed,
one can be convinced that its perimeter is infinitely long. We show how a Koch curve is constructed in the
figure 2. A Koch curve is a subset of R2 which is a limit of the following construction.

1. Start with a line of finite length, says [0, 1].

2. Divide the line into three parts with equal length

3. Replace the middle part with an equilateral triangle that has no base

4. Repeat the second step for each line segment

K1 K2 K3K0

Figure 2: Koch curve construction. The figure shows the first 4 fractals of the Koch curve.

At each step, the length of 1/3 is added to the curve, while the curve starting point and end point are zero
and one. The length of the curve is not bounded.

The Koch curve has a property which is called self-similar, meaning that there is a smaller part of the
Koch curve that looks similar to the whole Koch curve. However, fractals need not be self-similar and
some self-similar objects are not fractal. To be precise, Mandelbrot defined a fractal to be an object with a
Hausdorff dimension greater than its topological dimension; independent of self-similarity.

1.2 Generalization of Lesbesgue measure to non-integer dimension
For one-dimensional objects, the measure of length may be finite while the area and volume of them are
none. For a fractal curve, the length of a curve can be infinite as in the example of the coastline and Koch
curve, while the area of the curve is none. There is a missing step between a measure of infinite and a
measure that results in none. To tame this infinity, one can look at the Hausdorff measure to quantitatively
say how much substance is in the set corresponding to this type of objects.

Lenght Area Volumn

Line segment

Rectangle

finite

finite, ∞

∞

finite 0

0 0

0 0

Koch curve

Figure 3: Line segment and rectangle both can be described with length or area, however, we don’t have
much information on how much substance is in the Koch curve when saying the Koch curve has infinite
length and zero area.
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2 Hausdorff measure

2.1 Mathematical Construction of the measure
Given a separable metric space (X, d), we can define Hr a Hausdorff’s r-dimensional measure using Caratheodory’s
construction. The construction here follows mostly from Chapter 12 of [Tay06]. Intuitively, this is analog to
the measure of a coastline length with a meter stick of length no greater than δ.

Definition 2.1 (Hausdorff’s set function).

h∗
r,δ(S) = inf

∑
j≥1

(diam Bj)
r : S ⊆

⋃
j≥1

Bj ,diam Bj ≤ δ

 (1)

using a convention inf ∅ = ∞ and diam Bj = sup {d(x, y) : x, y ∈ Bj}

The limit of this set function is a metric outer measure.

Proposition 2.2. h∗
r = limδ→0 h

∗
r,δ is a metric outer measure.

Proof. There are two things to prove: h∗
r is an outer measure and h∗

r is a metric outer measure.
First, to show that h∗

r is an outer measure, we have to show the following properties:

(a) h∗
r(∅) = 0

(b) If A ⊆ B, then h∗
r(A) ≤ h∗

r(B).

(c) h∗
r

(⋃
j≥1 Aj

)
≤
∑

j≥1 h
∗
r(Aj) for any countable collection {Aj}j≥1.

(a) is straightforward as ∅ ⊆ {x} for an x ∈ X and the diameter of a singleton is 0. For (b), if B contains
A then the diameter of B is at least the diameter of A. The covering sets of B cover the set A also. Then,
the sum of the diameter to the power of r of covering sets of B is at least as great as that of A. The proof
of (c) is studied from [Nat12]. For (c), for each Aj choose a covering set Bjk such that

1. Aj ⊆
⋃

k≥1 Bjk,

2. diam Bjk < δ, and

3. for all ε > 0,
∑

k≥1

(
diam Br

jk

)
< h∗

r(Aj) +
ε
2i .

Once the covering set is chosen, we have ⋃
j≥1

Aj ⊆
⋃
j≥1

⋃
k≥1

Bjk.

The Hausdorff set function h∗
r,δ cannot be greater than the sum of Bjk’s diameter over j, k, i.e.

h∗
r,δ

⋃
j≥1

Aj

 ≤
∑
j,k≥1

(diam Bjk)
r
<
∑
j≥1

h∗
r(Aj) +

ε

2i

As this hold for all ε > 0 and take limit δ → 0, we must have

h∗
r

⋃
j≥1

Aj

 ≤
∑
j≥1

h∗
r(Aj).
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Secondly, to show that h∗
r is a metric outer measure, we will show that if the distance between any two

sets A and B is non-zero, then the outer measure is additive under the union of the two sets. Suppose the
distance between the two sets, d(A,B), is

d(A,B) = inf {d(x, y) : x ∈ A, y ∈ B} = ε > 0. (2)

Since the distance between two sets is finite, when the δ shrinks, the covering sets, Cj , may intersect with
either A or B, but not both. Consider h∗

r,δ when δ < ε/2,

h∗
r,δ<ε = inf

∑
j≥1

(diam Cj)
r : A ∪B ⊆

⋃
j≥1

Cj , diam Cj ≤ δ < ε/2

 (3)

The collection of covering sets can be split into three groups: those intersecting A but not B, vice versa,
and those not intersecting with both A and B. Since the diameter is non-negative, the latter group can be
removed as it can only increase the sum of the diameters. The expression of the union of all covering sets
becomes ⋃

j≥1

Cj =
⋃

k:Ck∩A ̸=∅

Ck ∪
⋃

ℓ:Cℓ∩B ̸=∅

Cℓ. (4)

Moreover, the set in the first group never intersects the second group as δ < ε/2. Then the infimum of the
whole A∪B is the infimum of those covering A adding with the infimum of those covering B. This properties
hold for all δ < ε/2, then its limit, if exists, also has this property.

Since h∗
r is a metric outer measure of (X), every Borel subset of X is measurable. Then, we define the

Hausdroff r-dimensional measure of a Borel set A by

Definition 2.3. Hausdroff r-dimensional measure A Hausdroff r-dimensional measure of a Borel
subset A of X, Hr(A), is defined as

Hr(A) = γrh
∗
r(A) (5)

when γr is

γr =
πr/22−r

Γ
(
r
2 + 1

) (6)

Notice that for a hypervolume of the hypersphere of diameter d is

πr/22−r

Γ
(
r
2 + 1

)dr.
For the derivation of the hypervolume see this online encyclopedia [Wei] on Wolfram Mathworld. The
rationale behind multiplication with γr is to make the Hausdorff measure coincide with the Lebesgue measure
in Rr when r is a whole number. For example, at r = 1 we have

γ1 =

√
π2−1

Γ( 12 + 1)
=

√
π2−1

2!
4

√
π

= 1.

The Hausdorff 1-dimensional measure is

H1(A) = h∗
1(A) = lim

δ→0
inf

∑
j≥1

diam Bj : A ⊆
⋃
j≥1

Bj ,diam Bj ≤ δ

, (7)

which is equivalent to the Lebesgue measure in one-dimensional space.
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2.2 Relation to the Lebesgue measures
As aforementioned, the Hausdorff n-dimensional measure coincides with the Lebesgue measure of the same
dimension when n is an integer. Most of the theorems and their proof in this section are studied from
Chapter 2 of [EG15].

Theorem 2.4. Suppose A is a Borel subset of Rn, then

Ln(A) = Hn(A). (8)

Before we proceed to the proof of the theorem, the definition of n-dimensional Lebesgue measure is a
product measure of the Lebesgue measure in 1 dimension. The theorem says that the Lebesgue measure
which is derived from the covering of n−dimensional cubes numerically agrees with the Hausdorff measure
which is given by arbitrary n−dimensional shape but infinitesimally small shapes.

Proof of theorem 2.4. Firstly, by isodiametric inequality (see Lemma 2.8 and its proof) we have Ln(A) ≤∑∞
j=1 γn(diam Cj)

n where {Cj} is any collection of covering sets for A. Taking the infimum of the righthand
side, we have Ln(A) ≤ Hn(A).

Next, Hn is absolutly continuous with Ln. We can divide a set A into dyadic cubes Qj . The Lebesgue
measure on A is a sum of these cubes. The covering cubes are a specific kind of covering set. Each cube has
a well-defined diameter and the volume of a sphere with the same diameter is

Vsphere = γn(diam Qj)
n = γn(

√
n)nLn(Q).

Since the Hausdorff set function h∗
n,δ(A) is taking infimum over all shapes of the covering,

γrh
∗
n,δ(A) ≤ inf

∑
j≥1

γn(diam Qj)
n : {Qj} are cubes, covering A,diam Qj < δ

 = γn(
√
n)nLn(A).

Therefore, whenever Ln(A) = 0 we have Hn(A) = 0.
Lastly, we will show that Hn(A) ≤ Ln(A). Given any set A, we can choose to cover cubes such that they

have a combined volume not too much larger than the volume of A,∑
i≥1

Ln(Qi) ≤ Ln(A) + ε. (9)

For each cube, there exists a collection of disjoint closed balls {Bik}k≥1 of diameter lesser than δ that can
contained in the interior of Qi, denoted by Qo

i , and the part that is not in any balls has measure zero,

Ln

Qi \
⋃
k≥1

Bik

 = Ln

Qo
i \
⋃
k≥1

Bik

 = 0.

Since Hn is absolutly continuous with respect to Ln,we have that Hn
(
Qi \

⋃
k≥1 Bik

)
= 0 as well. Using a
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property outer measure, we kickstart the chain of inequalities,

γrh
∗
n,δ(A) ≤

∞∑
i=1

γrh
∗
n,δ(Qi)

Balls → =

∞∑
i=1

γrh
∗
n,δ

( ∞⋃
k=1

Bi
k

)

subadditivity → ≤
∞∑
i=1

∞∑
k=1

γrh
∗
r,δ

(
Bi

k

)
from previous step → ≤

∞∑
i=1

∞∑
k=1

γn (diam Bki)
n
=

∞∑
i=1

∞∑
k=1

Ln (Bki)

Bik are disjointed → =

∞∑
i=1

Ln

( ∞⋃
k=1

Bki

)

Balls fit the cubes Ln-a.e. → =

∞∑
i=1

Ln (Qi)

equation (9) → ≤ Ln(A) + ε.

By taking the limit of δ → 0, the left-hand side becomes the Hausdorff measure Hn(A). Taking limit ϵ → 0,
we have Hn(A) ≤ Ln(A). Together with previous inequality, both measures coincide.

In the proof, we use the isodiametric inequality; now we are proving it. To begin with, a symmetrization
that leads to the isodiametric inequality is defined as follows.

Definition 2.5 (Steiner symmetrization). Suppose A is a subset in Rn, a ∈ Rn with |a| = 1, and Pa

is a plane given by normal vector a passing through the origin; then the Steiner symmetrization of
A, denoted by Sa(A), is

Sa(A) =
⋃

b∈Pa

A∩La
b ̸=∅

{
b+ ta : |t| ≤ 1

2
H1(A ∩ La

b )

}
(10)

where La
b is a line passing through b with direction vector a.

Notice that one can replace H1 in this definition with L1 as we showed eariler that they conincided. In-
tuitively, what this symmetrization does is captured in the figure 4. There are two important properties
that we use in the proof. The first property is that the Steiner symmetrization is a diameter non-increasing
operation.

Lemma 2.6. Suppose A ⊂ Rn and a ∈ Rn, we have

diam Sa(A) ≤ diam A (11)

Proof. For diam A = ∞, the inequality is trivial. For diam A < ∞, suppose A is closed. For a value of
ε > 0, we can always choose x, y ∈ Sa(A) such that the distance between x and y is ε-close to the diameter.
That is for all ε > 0 there exists x, y ∈ Sa(A) such that

diam Sa(A)− d(x, y) ≤ ε (12)

Next, we will choose points from Lx
a and Ly

a as follows

b = x− (x · a)a c = y − (y · a)a
r = inf {t ∈ R|b+ ta ∈ A} u = inf {t ∈ R|c+ ta ∈ A}
s = sup {t ∈ R|b+ ta ∈ A} v = sup {t ∈ R|c+ ta ∈ A}
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Figure 4: Choosing points in Sa(A) and A. A dinosaur-shape set A and its symmetrization Sa(A).

These points are illustrated in the figure 4. Suppose v − r ≥ s − u, otherwise we swap point x and y, this
leads to

v − r ≥ 1

2
(v − r) +

1

2
(s− u)

=
1

2
(s− r) +

1

2
(v − u)

≥ 1

2
H1(A ∩ La

b ) +
1

2
H1(A ∩ La

c ).

Since x and y are in Sa(A), they satisfies the inequalities |x · a| ≤ 1
2H

1(A ∩ La
b ) and |y · a| ≤ H1(A ∩ La

c ).
This leads to

v − r ≥ |x · a|+ |y · a| ≥ |x · a− y · a| = |(x− y) · a|.
All of these together lead to

(diam Sa(A)− ε)
2 ≤ d(x, y)2

= d(b, c)2 + |(x− y) · a|2

≤ d(b, c)2 + (v + r)2

= d(b+ va, c+ ra)2

≤ (diam A)2.

For all ε > 0, this is hold and a diameter is always nonnegative; then diam Sa(A) ≤ diam A

The second property of the Steiner symmetrization is that it conserves the Lebesgue measure.

Lemma 2.7. Suppose A ⊂ Rn Lebesgue measurable and a ∈ Rn, we have

Ln(Sa(A)) = Ln(A). (13)

Proof. Without the loss of generality, we choose a = en as Ln is rotational invariant. Using the fact that
L1 = H1 on R1, f(b) = H1(A∩La

b ) is Ln−1-measurable by Fubini’s theorem. Also, Fubini’s theorem implies
the measure of A is equal to integration over cross sections of A,

Ln(A) =

∫
Rn−1

H1(A ∩ La
b )db =

∫
Rn−1

f(b)db.
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Sa(A) is Ln-measurable because it can be rewrite as

Sa(A) =

{
(b, y) : |y| ≤ f(b)

2

}
\
{
(b, 0) : La

b ∩A = ∅
}
.

Since Sa(A) has the same cross-section in a as A, then the Lebesgue measure on Rn is the same.

Lemma 2.8 (Isodiametric inequality). Suppose A is Lebesgue measurable subsets in Rn, then

Ln(A) ≤ γn(diam A)n (14)

Proof. Let diamA < ∞, and {e1, e2, . . . , en} is a standard basis of Rn and A1 = Se1(A), A2 = Se2(A1), ..., An =
Sen(An−1). The proof of this lemma is divided into three steps: showing that An is symmetric with respect
to the origin, showing that the An satisfies the inequality, and lastly the proof of the lemma for any Lebesgue
measurable subsets A.

Firstly, An is symmetric with respect to the origin. That is x ∈ An implies −x ∈ An. This is straight-
forward as x is of the same distance from the origin as −x.

Secondly, to show that Ln(An) ≤ γn(diam An)
n, consider an x ∈ An. We have that −x ∈ An as well by

the first step. That is diam An ≥ d(x,−x) = 2|x|. Then An can be covered by a ball of diameter diam An.
Then the hypervolume of An is less than the hypervolume of a hypersphere of the same diameter.

For the last step, we consider a closure of A, denoted by A. Using the same construction, we can have
An, which also satisfies Ln(An) ≤ γn(diam An)

n. Consider inequalities,

Ln(A) ≤ Ln(A)

(Lemma 2.7) → = Ln(An)

≤ γn(diam An)
n ≤ γn(diam A)n = γn(diam A)n.

This completes the proof of isodiametric inequality and the proof of Hn(A) = Ln(A).

3 Hausdorff dimensions

3.1 Definition and basic properties

Definition 3.1 (Hausdorff dimension). A Hausdorff dimension of a subset S of X is defined as

Hdim S = inf {r ≥ 0 : Hr(S) = 0} (15)

If for all r, Hr(S) = ∞, the dimension is ∞. If for all r, Hr(S) = 0, the dimension is 0.

This definition is equivalent with

Hdim S = sup {r ≥ 0 : Hr(S) > 0} (16)

The following theorem ensures that the definition dimension respects the containment and union. The
theorem is from [Nad08]. For intuition, a 3 dimension ball contains singletons (0D) and intervals (1D); and
a union of the ball with a singleton should be described as a 3D object.

Theorem 3.2. Let A,B be Borel sets.

1. If A ⊆ B, then Hdim A ≤ Hdim B

2. Hdim (A ∪B) = max {Hdim A,Hdim B}
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Proof. The main idea for the first statement is a property of measure, A ⊆ B =⇒ Hr(A) ≤ Hr(B). Suppose
Hdim B = s, then for any ε > 0 the measure Hs+ε(B) = 0 (using equation (16)). Since Hr is a non-negative
measure, Hs+ε(A) = 0 as well. This is true for all ε > 0, therefore Hdim A cannot be bigger than Hdim B.

For the second statement, the ≥ direction is given by the first statement and the fact that A and B are con-
tained in A∪B. For the converse direction, consider s to be some value larger than max {Hdim A,Hdim B}.
The subadditivity of a measure implies

Hs(A ∪B) ≤ Hs(A) +Hs(B) = 0

This shows that s ∈ {r ≥ 0 : Hr(A ∪B) = 0}, then Hdim (A∪B) is at most s. This completes the proof.

The problem with the coastline paradox is the scale dependent of of coastal lenght, the following theorem
ensures that the Hausdorff dimension does not depend on the scale and the unit of measurement used. The
definition and theorem are from Chapters 1 and 2, respectively, of [Nad08].

Definition 3.3 (Similarity). A function f : S → T is a similarity if and only if there exists a positive
number λ such that

d(f(x), f(y)) = λd(x, y) ∀x, y ∈ S. (17)

Theorem 3.4. Let f : S → T be a similarity with the ratio λ ≥ 0, let r be a positive real number,
and let F ⊆ S be a Borel set. Then h∗

r(f [F ]) = λrh∗
r(F ) and consequently Hdimf [F ] = HdimF .

Proof. We will utilize the definition of h∗
r to prove this statement. First, suppose a collection of covering

sets of F is denoted by {Bj}. The image of F can be covered by the set {f(Bj)}. However, the diameter of
{f(Bj)} is scaled by the ratio r. Then the sum of the diameter is∑

j≥1

(diam f(Bj))
r
=
∑
j≥1

(λdiam Bj)
r
.

Moreover, we can restrict the covering set for f [F ] to be only in f [S]. A similarity transformation is injective
(because λ > 0), then it has an inverse on f [S]. When restricting the sets Bj to be of diameters no greater
than δ, the image f(Bj) has a diameter no greater than λδ. This leads to

h∗
s(f(F )) = lim

δ→0
inf

∑
j≥1

(diam Bj)
r : Bj covering f(F ) and diam Bj ≤ δ


(injectivity) → = lim

δ→0
inf

∑
j≥1

(diam f(Bj))
r : Bj covering F and diam Bj ≤ λ−1δ


= λr lim

δ→0
inf

∑
j≥1

(diam Bj)
r : Bj covering F and diam Bj ≤ λ−1δ


= λrh∗

s(F ).

Since F is Borel, then Hr on F and f(F ) are defined and they are vanishing at the same value of r. That
is Hdim F = Hdim f(F ).

3.1.1 Dimension of non-fractal objects

Proposition 3.5 (a point). Hausdorff dimension of a singleton is 0.

Proof. A singleton can be covered by itself which has zero diameter. Hausdorff r-dimensional measure of a
singleton is then 0 for any r. Using the definition in Eq. (15), the least r is 0.
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Proposition 3.6 (a line). Hausdorff dimension of an interval is 1.

Proof. Suppose an interval is I = [a, b] with a < b. The diameter of this set is b−a. A Hausdorff 1-dimensional
measure agrees with the Lebesgue measure and, hence has a finite b − a measure by both measures. For a
higher dimension r > 1 and a δ < 1, the covering of I can be taken to be

I ⊆
n⋃

j=1

[a+ (j − 1)δ, a+ jδ] =: C (18)

where n = ⌈ b−a
δ ⌉. The sum of the diameter of the covering set is no lesser than the infimum of that over all

possible covering sets. The sum is∑
j∈[n]

δr =

⌈
b− a

δ

⌉
δr ≤

(
1 +

b− a

δ

)
δr. (19)

Taking the limit δ → 0,

lim
δ→0

∑
j∈[n]

δr ≤ lim
δ→0

(
1 +

b− a

δ

)
δr

= lim
δ→0

δr + (b− a)δr−1 = 0.

This force Hr = 0 whenever r > 1. From Eq. (16), the Hausdorff dimension of an interval is 1.

Note that the Hausdorff dimension of a union of intervals and a union of singletons are not necessarily
equal to 0 or 1. The example of Cantor’s set illustrates this fact.

3.1.2 Cantor set

The Cantor set is constructed from an interval of a unit length [0, 1], and removing the middle chunk of
length 1

3 , repeat the process by removing middle chunks of length 1
3 of the remaining intervals. At each step,

Figure 5: The construction of the cantor set. The image is from Wikimedia and is in the public domain.

j, the union of the remaining intervals are called Kj a prefractal. The initial interval [0, 1] is denoted by K0.
We now have a descending chain of subsets

K0 ⊃ K1 ⊃ K2 ⊃ · · · ↘ K. (20)

The limit of this construction is K called a Cantor middle third set. The set is measurable as it’s a countable
subtraction of measurable sets. This set has a non-integer Hausdorff dimension.

Proposition 3.7. Hausdorff dimension of a Cantor middle third set is equal to log 2/ log 3

Proof. Consider k-th prefractal of the Cantor set, the prefractal covered the fractal K with 2k intervals, each
with diameter 1/3k. The sum of each diameter to the power of r is as follows

2k∑
j=1

(diam Bj)
r = 2k

(
1

3

)r

.
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The Hausdorff r-dimensional measure of K is a scaling of h∗
r ,

Hr(K) ∝ lim
δ→0

inf

∑
j≥1

(diam Bj)
r, Bj covering K, diam Bj < δ


As k → ∞, the covering set gets smaller, small enough to have a diameter lesser than any δ > 0,

lim
k→∞

2k
(
1

3

)r

= lim
k→∞

(
2

3r

)k

Notice that if inside the parenthesis is greater than 1 the limit diverges to ∞, if it is lesser than 1, the measure
vanishes. The supremum of r such that Hr(K) > 0 is r that makes 2

3r = 1. r = log 2/ log 3 ≈ 0.631.

3.1.3 Koch curve

A Koch curve is an example of a fractal curve. Its topological dimension is 1 but its Hausdorff dimension is
strictly greater. The construction and illustration of the Koch curve are previously shown in figure 2.

Proposition 3.8. The Koch curve has a Hausdorff dimension equal to log(4)/ log(3).

Proof. Let’s denote j-th prefractal of the Koch curve with Kj . At the first prefractal, K1, the covering
sets can be an interval. However, unlike the Cantor set, when stepping to the next prefractal K2, the same
covering can no longer cover the added spikes. Instead, a triangle of height equals to

√
3/6 times its base

K3

Figure 6: K3 can be covered by an isosceles triangle with base = 1, height = (1/3) sin(π/3)

can be used to cover the set K. The diameter of a triangle is equal to its base. For the δ ≥ 1, we can use
this to cover the set. For a delta in range δ ≤ 1

3k−1 , we can use the triangles with base 1
3k

to cover the set
K. The number of covering is 4k. The sum of the diameter is then

4k∑
j=1

(
1

3k

)r

= 4k
(

1

3k

)r

=

(
4

3r

)k

.

When taking limit δ → 0, it is taking limit k → ∞, the limit is finite only when r = log 4/ log 3.

3.1.4 Sierpinski gasket

The Sierpinski gasket is another example of a fractal shape with a dimension greater than 1 while its
topological dimension is 1.

Proposition 3.9. The Sierpinski gasket has a Hausdorff dimension of log 3/ log 2

We will not write out the proof of this proposition. The proof is similar to the proof of the Cantor set.
Begin with covering with the first prefractal and as limit δ → 0 pick the further prefractal to be the covering
sets.
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Figure 7: The first five prefractal of the Sierpinski gasket. The image is taken from Wikimedia and is in the
public domain.

3.2 Comparisions to similarity dimension

Definition 3.10 (Similarity dimension).

Sdim S = − log(k)

log(λ)
(21)

where k ≥ 2 is an integer and λ < 1 is a real number such that there is a disjoint union S = S1∪...∪Sk

that for each j, λS := {λx : x ∈ S} is congruent to Sj .

For a fractal that is self-similar (not any fractals), one can use its self-similarity to describe its fractal
dimension. Intuitively, k is a number of copies of itself, and λ is a contraction factor. For example, the Koch
curve has four copies k = 4 of itself each with a size one-third of the original λ = 1/3. We can also say that
the Koch curve has sixteen copies of itself each with a size one-ninth of the original. Both result in the same
similarity dimension. The Hausdorff dimension of the same fractal need not be the same as its similarity

Figure 8: Two of many possible ways to count number copies. The left figure counts 4 copies, each with a
color either green or magenta. While the right figure counts 16 copies, but with a smaller size.

dimension. However, there are some useful relations: the similarity dimension provides an upper bound for
the Hausdorff dimension and the finite non-zero Hausdorff measure implies the similarity dimension. The
definition of similarity dimension and the following theorem are from chapter 12 of [Tay06].

Proposition 3.11. S ⊂ Rn is self-similar, then

r > Sdim S =⇒ Hr(S) = 0, (22)

provided h∗
r,δ < ∞ for some δ > 0. Furthermore, for any r ≥ 0,

0 < Hr(S) < ∞ =⇒ r = Sdim S (23)

Proof. Let us denote a collection of covering sets of S as {Bj}∞j=1. Since S is self-similar, suppose it has k
copies of itself with contraction ratio λ. For each, Bj perform k similarity transformations of contraction
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ratio λ on Bj to get {Bjl}kl=1. Then the diameter of the covering sets satisfy∑
j,l

(diam Bjl)
r
= kλr

∑
j

(diam Bj)
r
.

This means we can take Bj that are coverings of size no larger than δ, perform the similarity transformations
and the diameters will be no greater than δλr. This implieskλr

∑
j

(diam (Bj))
r
: diam Bj ≤ δ

 ⊆

∑
j,l≥1

(diam (Bjl))
r
: diam Bjl ≤ δλ


and kλrh∗

r,δ(S) ≥ h∗
r,δλ(S).

As δ → 0, we have that k the number of copies of size lesser than δ grows while λ shrinks. Since r >
Sdim S = − logλ(k), we have kλr < 1. Therefore Hr(S) = 0

For the second statment, we use Hr(λBj) = λrHr(Bj). Since S is self similar with k copies of contraction
ratio λ, we have that kλrHr(S) = Hr(S). The premise is that Hr(S) is finite. We then have k = λ−r,
equivalently r = − logλ (k) = Sdim .

Self-similarity need not to be coincide with the Hausdorff dimension. Moreover, Mandelbrot’s characteri-
zation of fractals using the Hausdorff dimension cannot be rephrased directly using the similarity dimension.
Some sets are fractals but their similarity dimension is the same as their topological dimension. For example,
a set of rationals in [0, 1)

Proposition 3.12. Let’s Q = [0, 1) ∩Q. Then,

Hdim Q = 0 while Sdim Q = 1.

Proof. p ∈ [0, 1/2)∩Q can be bijectively mapped to q ∈ [0, 1) by q = 2p, similarly for p ∈ [1/2, 1)∩Q. Using
Q = Q1 ∪Q2 where Q1 = [0, 1/2)∩Q and Q2 = [1/2, 1)∩Q, this means that k = 2 and λ = 1/2. Therefore,
a similarity dimension of Q is 1. For the Hausdorff dimension, Q can be covered with a set of countable
singletons, which have no diameter. Using the definition in equation (15), the dimension is 0.

4 Conclusion
A Hausdorff r-dimensional measure of a Borel set A, Hr(A), is defined to be (1.) proportional to the
infimum of the sum of diameters exponentiated by r of infinitesimally small covering sets and (2.) coincide
with Lebesgue measure when r is an integer.

A Hausdorff dimension extends the concept of dimension to real numbers rather than just integers. For
any Borel sets A, its dimension is given by the supremum of r such that Hr(A) > 0 or equivalently by the
infimum of r such that Hr(A) = 0. This is similar to the fact that the square has no volume and a line has
no area.

For fractals with self-similarity, another fractal dimension called similarity dimension can be defined. It
gives a lower bound for the Hausdorff dimension. However, similarity dimension of a fractal object does not
necessarily coincide with its Hausdorff dimension.

4.1 Fun stuffs
• Hunting for hidden details in fractals with this website2

• Youtube video: Sounds of the Mandelbrot Set 3

• Canada ranked no.1 in coastline lenght4 (measureing at scale 1:250,000).
2https://mandelbrotandco.com/en.hub169.html?set=BurningShip
3https://www.youtube.com/watch?v=GiAj9WW1OfQ
4https://en.wikipedia.org/wiki/List_of_countries_by_length_of_coastline
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