แน่ใจนะว่าจำนวนจริงมีอยู่จริง

เรารู้ว่ามีสิ่งที่เรียกว่าจำนวนจินตภาพอยู่ นั่นคือจำนวนที่เป็นรากที่สอง (Square root) ของจำนวนที่เป็นลบ เช่น รากที่สองของลบหนึ่งแทนด้วย $i:=\sqrt{-1}$ พอได้ยินคำว่า “จินตภาพ” ทำให้หลายคนคิดไปว่าจำนวนจินตภาพมีอยู่แค่ในจินตนาการ ไม่ได้มีอยู่จริง ประกอบกับความคิดที่ว่าจำนวนที่มีอยู่จริงจะต้องวัดค่าของมันออกมาได้ แต่จำนวนจินตภาพไม่มีสถานการณ์ที่เห็นได้ง่ายในชีวิตประจำวันที่เราอะไรแล้วได้ค่าเป็นจำนวนจินตภาพ ก็ยิ่งพาให้เราคิดว่าจำนวนจินตภาพนี้ไม่ได้มีอยู่จริง เป็นเพียงจินตนาการของนักคณิตศาสตร์เท่านั้น ในทางกลับกัน ในบทความนี้จะพาทุกคนกลับมาตั้งคำถามกับความเชื่อโดยไม่ได้ตั้งข้อสงสัย ว่าจำนวนจริงทุกจำนวนนั้นมีอยู่จริง จริง ๆ หรือ มีอยู่จริงในที่นี้มีความหมายในทำนองเดียวกันกับการตั้งคำถามกับจำนวนจินตภาพ เราจะพาตั้งคำถามว่าเราวัดค่าบางอย่างให้ออกมาเป็นจำนวนจริงได้หรือไม่ แน่นอนว่าเราวัดและจับต้องจำนวนที่เป็นจำนวนเต็ม เศษส่วนได้อยู่แล้ว สิ่งที่น่าสงสัยที่สุดก็คือจำนวนที่ไม่ได้เป็นเศษส่วนอย่างจำนวนอตรรกยะ (irrational numbers) เช่น $\pi$, $\sqrt{2}$, $\sqrt{3}$, หรือ $\varphi$ (สัดส่วนทองคำ) อะไรเป็นจำนวนจริงบ้าง การให้คำนิยามของจำนวนจริง เช่น จำนวนจริงคือจำนวนที่อยู่บนเส้นจำนวนจริง จำนวนทุกจำนวน จำนวนที่มีอยู่จริง เหล่านี้ เป็นนิยามที่อาจจะพอทำให้เห็นภาพ แต่ก็ไม่ได้รัดกุมเท่าใดนักและสุ่มเสี่ยงที่จะสร้างความเข้าใจผิด ในบทความนี้เราจะไม่ได้อธิบายว่าจำนวนจริงคืออะไร นิยามอย่างไร แต่จะบอกว่าในเซตของจำนวนจริง $\mathbb{R}$ ประกอบไปด้วยอะไรบ้าง ในเซตของจำนวนจริงมี จำนวนนับ $\mathbb{N}$ (เช่น $1, 2, 3, \ldots$) จำนวนเต็ม $\mathbb{Z}$ (เช่น $\ldots, -2, -1, 0, 1, 2, \ldots$) จำนวนตรรกยะ $\mathbb{Q}$ (จำนวนที่เป็นเศษส่วนของจำนวนเต็ม เช่น $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots$) จำนวนอตรรกยะ $\mathbb{R}\setminus\mathbb{Q}$ (เครื่องหมาย $\setminus$ หมายถึง เซตของสมาชิกใน $\mathbb{R}$ ที่ไม่อยู่ในเซต $\mathbb{Q}$) จำนวนอตกรรยะเป็นจำนวนที่สำคัญมากในการสร้างเซตของจำนวนจริงขึ้นมา หากไม่มีจำนวนอตรรกยะอยู่ในเซตนี้ เซตนี้จะเรียกว่าเป็นเพียงจำนวนตรรกยะเท่านั้น...

December 29, 2023 · 2 min